
STAINLESS STEEL HEAT EXCHANGERS

IDEAL FOR SWIMMING POOLS, KOI PONDS & SOLAR

Stainless Steel Heat Exchanger Specifications

Code Numbers		60	100	130	170	230	460
*Maximum Output	B.T.U.	60000	100000	130000	170,000	230,000	460,000
	Kw	17.6	29.3	38.1	49.8	67.4	134.7
Filter Secondary Flow	gpm	15	24	31	41	65	103
	m3/hr	4	7	9	11	18	29
Boiler Primary Flow	gpm	6	9	11	15	20	38
	m3/hr	2	3	3	4	6	10
Primary Water Design Flow Temperature	• F	82 180	82 180	82 180	82 180	82 180	82 180
Primary Water Design Return Temperature	F	71 160	71 160	71 160	71 160	71 160	71 160
Primary Head Loss	ft	1	2	2%	3	3%	5
	mb	40	80	95	110	130	150
Dimensions							
WWidth:-	Inches mm	<i>4W</i> 116	<i>4W</i> 116	4W 116	4W 116	<i>4W</i> 116	
LLength :-	Ins	9W	1 1/i'	16W	21%'	27W	30W
	mm	240	287	417	543	695	775
D Depth :-	Ins	5W	5W	5W	5W	5%'	5W
	mm	140	140	140	140	140	140
P Primary Connections BSP Male Thread	lns	1"	1'	1'	1'	1'	1 W
	mm	25.4	25.4	25.4	25.4	25.4	38.1
S Secondary Connections BSP Male Thread	Ins	1%'	1%'	1%'	1%'	1W	2
	mm	38 1	38.1	38.1	38 1	381	50.8
Weight	lbs	6	7	10	13	16	38
	kgs	2.5	3	4.5	6	7.5	17.5

*Please note that output decreases as the pool water temperature increases and the calculations shown above are based on a primary water design flow temperature of 82CC (18OF) and return temperature of 71'C (16OF)

3. Care must be taken to insure that no chemical residue can enter the heat exchanger when the system is not running.

This process should be an integral part of decomissioning. 4. p.H. Should be kept between 7.2 7.6 to prevent scaling and corrosion.

5. To retain heat and prevent heat loss we suggest that our heat exchanger is used in conjunction with a pool cover.